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The stability of non-Newtonian jets was investigated. A linearized stability 
analysis shows that a liquid column of a viscoelastic fluid exhibits more rapid 
growth of axisymmetric wave disturbances than a Newtonian fluid of the same 
zero shear viscosity. This result is independent of the form of constitutive 
equation chosen. Experiments in weakly elastic fluids confirm this expectation, 
whereas data on fluids with more pronounced elastic properties indicate that 
non-linear phenomena are dominating. The disturbances appear as a series of 
droplets connected by random lengths of threads, which thin with distance 
and eventually lead to jet breakup. Even in dilute viscoelastic solutions, jet 
breakup does not occur by the growth of clearly defined waves. 

1. Introduction 
A considerable literature is available on the behaviour of capillary jets of 

Newtonian fluids; however, very little is known about the behaviour of non- 
Newtonian fluids. The behaviour of non-Newtonian jets is both of practical and 
theoretical interest. It is often necessary to design atomization equipment for 
fluids which are highly non-Newtonian, and yet very little knowledge is available 
as to what to expect above the general notion that highly elastic fluids are 
difficult to atomize. From a theoretical point of view this problem is also of 
interest since a linear stability analysis of Newtonian jets is very successful in 
predicting the behaviour of these jets under certain conditions (laminar flow). 
It is therefore tempting to determine whether a linear stability analysis would 
lead to similar results for viscoelastic fluids. 

Middleman (1965), in arecent paper, presents a stability analysis for a capillary 
jet based on a 3-constant linearized Oldroyd fluid together with some approximate 
solutions which predict a lower stability for such a fluid as compared to a 
Newtonian fluid. This is surprising, since experimental evidence involving 
spinning polymer solutions and melts, as well as experience with Napalm 
solutions in flame throwers seem to indicate the opposite effect. It is, therefore, 
of interest to investigate if Middleman’s results are only limited to the specific 
viscoelastic model chosen, or whether they do, indeed, represent the typical 
behaviour of any viscoelastic material. The present paper, therefore, extends 
the analysis t o  a general viscoelastic material. The theoretical results are supple- 

44 Fluid Mech. 38 



690 M .  Goldin, J .  Yerushalmi, R. Pfeffer and R. Shinnar 

mented by experimental studies of the breakup of a cylindrical jet of Newtonian, 
viscoinelastic and viscoelastic fluids. 

2. Theoretical analysis 
2.1. Background 

The capillary instability of a Newtonian jet has been the subject of numerous 
experimental and theoretical investigations. Most of the analytical solutions 
stem from the pioneering works of Rayleigh, Weber and Tomotika. Rayleigh 
(1879) considered the capillary stability of a cylinder of an inviscid fluid; he 
also discussed the case of a viscous jet without inertia (1882). Weber (1931) 
obtained the complete linear solution for a viscous jet under surface tension 
forces in which he also included the action of an inviscid atmosphere. Tomotika 
(1935) extended the solution to include the effect of a viscous surrounding. 

The corresponding analysis for a jet of a viscoelastic fluid may, in practice, be 
limited by the choice of a specific constitutive equation. However, in the present 
linear analysis, which rests upon the basic assumption that the jet is initially 
completely relaxed and is subsequently subjected to very small disturbances, 
the stability question is found to be dependent only on the properties of a com- 
plex viscosity which, in the region of linear behaviour, are clearly defined. 

Biot (1945) and Bland (1960, chapter 2) have shown that the rheological proper- 
ties of any incompressible isotropic viscoelastic material in the region of very 
small deformations can be described by the following constitutive equation : 

N t  

rij = Es,. + qme$ + r = l l - m  C C,. e-pT(t-Tkzj(T) dr,  (1) 

where rii, eij and are the components of the deviatoric stress, linear strain and 
rate of strain tensors respectively and E,  qm, C, and p, are all real and positive. 
The coefficients E (elastic modulus) and y, (lim$(a)) account for theinstantaneous 

elasticity and the long-term viscous flow respectively. The summation represents 
a discrete spectrum of relaxation times l/,u,. Corresponding to equation (1) is 
a complex viscosity $(a) obtained via a two-sided Laplace transform and 

a+m 

defined as 

The complex viscosity $(u) serves as a compact description of the constitutive 
equation. It is, in fact, simply the stress-strain rate transfer function for the 
material and the behaviour of the material can be described in terms of the 
analytic character of $(a) considered as a function of the complex variable a. 

The rheological properties of viscoelastic materials in the linear region are 
often expressed in operational form 

PT.. 23 z= QE.. 23 ’ (3) 
where P and Q are polynomials with constant coefficients in the operator slat. 
The complex viscosity corresponding to (3) is given by 
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This complex viscosity should possess analytic properties which are equivalent 
to, or suitably approximate, the behaviour of @(a) of (2). By using the theory of 
partial fractions Bland (1960) has shown that (4) is identical to (2) if the zeros 
of P and 6 are all real and non-potitive and they alteznate, the smallest zero in 
absolute magnitude belonging to Q. The polynomial Q must also be of a degree 
one higher than that of p .  Thus, (4) can be properly written as 

h 

where the -Aj  are the zeros of Q, and correspond to a discrete spectrum of re- 
tardation times l /Aj.  Note that if, for any real material, E or qrn or both are zero, 
equation (2), and subsequently, equation (4) can be readily modified accordingly. 

The mathematical analysis of the stability of a linear viscoelastic jet closely 
parallels Weber's analysis for a Newtonian jet. The results of the present analysis, 
in fact, include the Newtonian jet as well as the purely elastic jet as special cases. 

2.2. Axisymmetric disturbances 
Consider a cylindrical jet issuing from a circular nozzle into air. The following 
assumptions are made: (i) the jet is initially relaxed, moving horizontally with 
a constant velocity, V ;  (ii) the capillary waves are symmetrical about the jet 
axis; that is, the jet at  all times is circular in cross-section and either expands 
or contracts; (iii) the fluid is incompressible; (iv) there is no interaction with the 
ambient air. 

Because of the symmetry of the problem, a cylindrical co-ordinate system 
(r, 8, x )  is chosen which moves with a constant velocity V .  The linearized equa- 
tions of motion and continuity are 

where p is the density, 
static pressure. The equation for the jet surface disturbed by some wave is 

and V ,  are the velocity components and p is the hydro- 

r(z,  t )  = a+ t@, t ) ,  (8)  

where a is the unperturbedradius of the jet and t ( z ,  t )  is the radial displacement of 
a point on the surface. The boundary conditions specify that the shear stress 
vanishes on the surface of the jet, and that the radial component of the stress is 
balanced by the stress induced by the surface tension force. Assuming that 6 is 
very small compared to a the boundary conditions are expressed as: 

[ 7 r J r s  a = 0, I 
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where r~ is the coefficient of surface tension. In  addition the velocity components 
along the axis of the jet (at r = 0) must be finite. 

Application of a two-sided Laplace transform to (6) and (7) results in 

where $(a) is given by (2).  The boundary conditions are similarly transformed. 
Henceforth the analysis is exactly identical to the corresponding analysis for 
a Newtonian jet with the constant Newtonian viscosity, T ~ ,  replaced by $(a). 
The continuity equation is satisfied by a stream function, $, which is related to 
the velocity components by 

l a $  l a $  J 7 - - V  = _ - _  ’ r a z ’  ‘ r a r ‘  

Eliminating the pressure from the two equations of motion and introducing the 
stream function yields 

aA$ = ?‘j(a)AA$, (13) 

where 

The solution to this equation with assumed periodicity in the axial x direction is 

1% = r[ClI,l;(kr)+C,Il(Zr)+C3K,(kr) +C4K,(Zr)]e-i”z, (14) 

where 

The quantity Ic is the wave-number of a disturbance wave and is related to the 
wavelength, 6, by 6 = 2n/k, I, and K ,  are modified Bessel functions of order n, 
and C,, C,, C3, C4 are arbitrary constants. Application of the boundary conditions 
leads to the secular or characteristic equation which relates a and k: 

where I;( ) denotes differentiation of the Bessel function with respect to  the 
argument. Equation (15) is in general very complex and cannot be solved 
analytically. However, for small arguments, the Bessel functions can be approxi- 
mated by the leading terms of their expansions. The resulting equation is 

az+-q(a)a--(l-k2a2) 3k2 ok2 = 0. 

P 2Pa 
The above approximation corresponds to conditions of practical interest where 
the wavelengths of the disturbances are much greater than the radius of the 
unperturbed jet. 
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Solution of the characteristic equation yields the rate of growth of unstable 
wave-like disturbances; these correspond to the positive real parts of the charac- 
teristic values of a. For infinitesimal disturbances of the same initial magnitude, 
droplet formation will be controlled by the particular wave which grows most 
rapidly. 

The fastest growing wave can be found by implicit differentiation of (16), and 
letting da/dk = 0 (the existence of a real positive a is shown in the subsequent 
discussion). The fastest growing rate, a*, can, in this way, be obtained from 
the following expression 

The corresponding wave-number is obtained from 

For a Newtonian fluid, $(a) = vo, and equations (17) and (18) yield 

The zero subscript in cc$ and k; denotes Newtonian values. The dimensionless 
wavelength is obtained as 

An experimental measure of the stability of a jet is the length of the coherent 
portion of the jet, defined as the breakup length, L, which is given by 

L = cv/a*, (22)  
where Cis a constant which depends on the initial magnitude of the disturbance, 
and must be determined experimentally. Equations (19) and (22)  can be com- 
bined to give the dimensionless breakup length as 

- = C  2a (23) 

where We = 2paV2/0  is the Weber number and Re = 2pVa/rjO is the Reynolds 
number. 

No simple expression for a* can be obtained for a viscoelastic jet in view of the 
relative complexity of q(a). The value of a* can, however, be readily computed 
numerically when +?(a) assumes a simple form. 

It is of great interest to compare the stability of a viscoelastic jet with respect 
to a jet of Newtonian fluid. For this purpose (17) is divided through by 
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using (19) one obtains 
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From (24) it  is clear that the value of the ratio at/.* depends on the relative 
magnitude of $(a) with respect to yo. Recalling the expression for q(a) 

we can distinguish between two classes of behaviour: 
(a) When E = 0 in (2), the material behaves as a real fluid in the sense that, 

for very slow deformations (a + 0), the material behaves as a Newtonian fluid 
of viscosity yo = @ O ) ,  with q(0) given by 

N 

In  this case @(a) is a monotonically decreasing function of tl with ym as the lower 
bound. Consequently $(a*) < $ ( O )  and according to (24) such a jet is less stable 
than a Newtonian jet of viscosity yo = $ ( O ) .  The same conclusion can also be 
deduced from a simple geometrical argument which also confirms the existence 
of a real positive a*. For a fixed value of k, (16) can be written as 

where 

B 
$(a) = - - B’a, 

a 

For a Newtonian fluid $(a) = yo; therefore, referring to figure 1 (in which both 
sides of (26) are plotted as a function of a) it is clear that as long as B is positive 
(ka < l), a positive real root of a will always exist (point 1 in figure 1). In  the case 
of a viscoelastic fluid with @(a) bounded by yo and ym, figure 1 again shows the 
existence of a positive real a (point 2 in figure 1). Furthermore, it can be generally 
concluded that for any value of k for which a Newtonian fluid of viscosity yo is 
unstable (with a real and positive) a viscoelastic fluid with q(0) = yo has a real 
positive a which is larger in magnitude than the corresponding a of the New- 
tonian fluid. If we construct a plot of a vs. Ic2 (see figure 2), the curve for any 
viscoelastic fluid with finite $(a) will lie above the curve corresponding to a 
Newtonian fluid of the same zero viscosity and below the curve corresponding 
to an inviscid fluid with all curves crossing the k axis a t  the same points. In this 
sense a jet of such a fluid is less stable than a Newtonian jet relative to small 
disturbances. Any experimentally observed higher stability must, therefore, be 
due to non-linear phenomena or, alternatively, the fluid may not be a true fluid 
in the sense that it is characterized by a complex viscosity with E =t= 0. This 
brings us to the second class of behaviour. 

(b)  When E is finite in (2) and all the ,ur are zero, we deal with a material which 
displays a purely elastic behaviour and for which 

?(a) = E/a. (27) 
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Referring again to (26) and to figure 3 it is seen that if E < B there will always 
be a positive real a (point 1 in figure 3). When E > B, however, no positive root 
exists and the jet is unconditionally stable. If pr $: 0 we find similarly that when 
E > B the jet is unconditionally stable whereas for any viscoelastic material 
with E < B there exists a real positive a causing instability. However, in this 

a 
FIGURE 1. Qualitative representation of equation (26) for a Newtonian 

fluid of viscosity q,, and a viscoelastic fluid with q(0) = qo. 
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FIGURE 2. A plot of a V.T. k2 for three fluids. - , inviscid fluid +)(a) = 0;  - - -, 
Newtonian fluid qo = 1; -.-.- , viscoelastic fluid with $(a) = qo/(l  +ha), qo = 1, 
A = 0.1, o' = 70, p = 1, a = 0.1. All values are in CGS units. 
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case it is meaningless to talk about the effect of viscoelasticity on the stability 
of the jet since there is no obvious basis for comparison. 

Most of the recent theoretical works on non-Newtonian flow deal with fluids 
for which q(0) is finite. Real viscoelastic fluids, however, might have some 

a 
FIGURE 3. Qualitative representation of equation (26) 

for a purely elastic body of modulus E.  

inherent structure and therefore, a yield value. Such fluids could lead to com- 
pletely stable jets based on the arguments given above. 

2.3. Asymmetric disturbances 
The stability of a viscoelastic jet with respect to asymmetric disturbances can 
be analyzed by a method similar to the one used above. However, by considering 
deformations whose wavelengths are large compared to the unperturbed radius 
of the jet, the appropriate characteristic equation can be obtained directly from 
the equations of motion by recognizing that, under these circumstances, V,  can 
be considered independent of the radial direction r ,  and furthermore, that 
V ,  V,. With these assumptions the dynamic equation becomes 

where 

pu is the stress due to surface tension traction and c ( 2 ,  t )  is related to V,  via, the 
continuity equation aP, 2 

or -=--uc. (29) 
av, 2ac _ -  - _ ~ -  
82 aat az a 
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Differentiating ( 2 8 )  with respect to z and substituting (29) yields 

[(a) is assumed to be of the form 
m 

s=o 
E = C 6: eikz cos (s8 + Q), 

697 

where Q is a suitable phase shift and 6: is the initial amplitude of a disturbance 
wave. Substituting ( 3 1 )  into ( 3 0 )  results in the following characteristic equation 

For axisymmetric waves s = 0, and equation ( 3 2 )  is identical to ( 1 6 )  which has 
been obtained before. Letting s = 1 corresponds to a displacement of the jet 
axis about its original straight line, with the cross-section remaining circular a t  
all times; s = 2 corresponds to waves with elliptical cross-sections in which the 
vertical and the horizontal semiaxes alternate along the axis of the jet. Higher 
modes correspond to still different configurational deformations. 

It follows from ( 3 2 )  that a jet of fluid obeying a linear constitutive equation is 
completely stable with respect to asymmetric disturbances with wavelengths 
that are larger than the free radius of the jet. 

2.4. Discussion of theoretical results 
It has been shown that if the jet instability is dominated by a real latent root a*, 
and if the complex viscosity is bounded in absolute value by Y/~,  then the jet is 
less stable than a Newtonian jet of viscosity v0. On the other hand when $(a) is 
unbounded the jet may become completely stable, and no meaningful basis of 
comparison can be established for the behaviours of such a jet and a jet of a 
Newtonian fluid. The analysis which led to these conclusions is subject to several 
assumptions whose validity must be assessed before the results can be evaluated 
in the light of the experimental data. 

One of the underlying assumptions in the present analysis is that the jet is 
completely relaxed initially. In reality, the free jet experiences a stress relaxation 
in a region near the exit nozzle. Whereas for low-speed Newtonian jets this 
region is negligibly short in length, the corresponding length for viscoelastic 
jets may be significant and thus strongly affect the subsequent stability of these 
jets. The use of a constitutive equation in which ?(a) assumes the form given by 
(2) is valid only when the initial profile is virtually relaxed; should the stress 
relaxation occur along a significant portion of the jet, the use of this model 
ceases to be valid. The validity of the linear theory of viscoelasticity is also 
questionable for the case in which infinitesimal disturbances are superimposed 
upon finite deformations. Furthermore, in contrast to a Newtonian fluid, the 
flow of a viscoelastic fluid inside the capillary tube is accompanied by generation 
of normal stresses; the decay of these stresses along the free jet cannot be 
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accounted for by the linear theory. In  the final analysis, one has to weigh $he 
validity of the assumption regarding the initial relaxed profile in the light of the 
experimental conditions and the properties of the fluid of interest. 

The next obvious question bears upon the validity of a linear stability analysis. 
The present analysis presupposes the existence of wave-like disturbances whose 
initial amplitudes are of infinitesimal order of magnitude as compared to the 
wavelengths of the disturbances. The stability of the jet is, therefore, analyzed 
relative to these disturbances. Consequently, one can neglect the non-linear 
terms in the equations of motion and, at  the same time, employ a linear constitu- 
tive equation in place of a more general, non-linear, constitutive equation which 
is capable of describing all viscoelastic phenomena. If in the course of their 
growth, the amplitudes of the disturbances attain a moderate size, the linear 
theory can no longer be considered applicable and the subsequent stability of the 
jet must be investigated with due account to non-linear effects. 

In  the case of low-speed Newtonian jets, the linear theory leads to results which 
are in excellent agreement with the experimental data despite the fact that the 
amplitude of the disturbance wave does attain a moderate size in a relatively 
short time interval. This may seem to indicate that the non-linear effects in- 
herent in the equations of motion do not alter significantly the growth of dis- 
turbances on the surface of a low-speed Newtonian jet. On the other hand, the 
complete description of a viscoelastic jet involves, in addition to the non-linear 
inertia terms of the momentum equations, a non-linearity which is inherent in the 
rheological properties of the fluid. The stability of a viscoelastic jet relative to 
finite disturbances may, therefore, be governed by non-linear effects. The linear 
theory attempts to describe the stability of the jet relative to infinitesimal 
disturbances and in this sense it is completely valid. However, as will be discussed 
in the next sections, the linear theory fails to explain satisfactorily the observed 
behaviour of capillary jets of polymer solutions. 

3. Experimental studies 
The equipment and techniques used in these studies are straightforward and 

require only brief explanation. Either an Instron mechanical tester or pressurized 
nitrogen activated the piston of a hydraulic cylinder which contained the test 
fluid. The liquid flowed from the cylinder, through a section of reinforced rubber 
hose and past a 50p filter. These served to minimize mechanical vibrations that 
might be present in the Instron from being transmitted along the walls of the 
metal piping or through the fluid itself and also to trap any contaminant particles. 
The fluid then entered a cube designed to house a pressure transducer and the 
capillary. This unit was mounted on a concrete block to dampen vibrations from 
the surroundings. Nozzles were fashioned from hypodermic needles by grinding 
their tips to a flat face. The bores were examined under 100 power magnification 
for concentricity and surface imperfections. The L/2a ratios ranged from 
L/2a = 50-200. 

Still photographs were taken with a 4 x 5 bellows camera equipped with a 
Polaroid back while motion pictures were made with a 400 ft. capacity, high-speed 
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Hycam camera. EG & G single flash and strobe units provided the microsecond 
duration, high intensity lighting. 

The range of experimental variables included jet velocities from 250 to 
3000cm/sec and nozzle diameters between 0.0216 and 0.158 em. 

3.1. Test Jluids 
The test fluids consisted of a number of water soluble polymers (see table 1)  
dissolved in distilled water under conditions minimizing shear and thermal 

10 I I I 1 
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m 8 .* 
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1 I 1 I 
1 10 102 103 104 105 

Shear rate (sec-I) 
FIGURE 4. Published data of apparent viscosity va. shear rate for the test fluids. 0, 0.5 yo 
Guar Gum (J-2P), Wells (1965); x ,  0.05% Separan AP 30; A, 0.25% Separan AP-30, 
Schwarz (1968); a, 0.25% Separan ET-597, Seyer (1967); 0, 0.25% SCMC 705, Merrill 
(1959). 

degradation. Values of density and surface tension for the polymeric solutions 
were of the same order as water. A summary of published viscosity vs. shear rate 
data for some of the test fluids is shown in figure 4. Zero shear viscosities were 
determined or estimated from our measurements and additional information 
from Turian (1964), Schwarz (1968), Wells (1965) and Merrill (1959). These are 
given in table 1. 

Huppler (1965) and Hurd (1962) have characterized Carbopol as a non- 
Newtonian inelastic fluid exhibiting a shear dependent viscosity but possessing 
very small normal forces. Several investigators, including Dodge & Metzner 
(1959) and Kapoor (1963), have demonstrated that Carbopol solutions are not 
drag reducing nor do they display any recoil phenomena. All the other polymeric 
liquids show sharp reduction in drag over that expected for Newtonian fluids 
and are considered t o  be viscoelastic. Shertzer (1965) has found appreciable 
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normal forces to exist in Separan solutions. Measurements of normal forces were 
extended by Oliver (1966) to include Separan, Polyox and SCMC at concentra- 
tions down to  the 0.01 % level. Using a three constant Oldroyd model on 0.45 % 

Concentration Zero shear 

Carbopol 934 (B. F. Goodrich Co.) 0.10 5-10* poise 
Separan AP30 (Dow Chemical Co.) 0.05t 0.50 

Sodium Carboxy-Methyl Cellulose Type 7HS 0.25 0.45 

Polyox-Coagulant (Union Carbide Corp.) 0.25$ 2-5* 

Polymer (Yo)  viscosity 

0.25f 10.0 

(Hercules Powder Co.) 

Guar Gum (Stein Hall Corp.) 0.055 0.022 
* Estimated. 

Small amounts of glycerin added for stability. 
1 Small amounts of isopropanol added for stability. 
0 Small amounts of formaldehyde added to prevent bacterial growth. 

TABLE 1. Polymeric solutions used in experimental investigation. 

Separan data at  low shear rates, the molecular relaxation time can be estimated 
to be of the order of 0.25 see. 

3.2. Qualitative observations 
Marked differences were found to exist between the behaviour of Newtonian, 
non-Newtonian inelastic and viscoelastic jets. The distinctions are exemplified 
by the photographs of figure 5, plate 1, which show typical appearances of the 
jets formed by each class of fluids. In Newtonian jets, examples of which are 
water and ethylene glycol, an infinitesimal disturbance generated within the 
capillary is propagated as an exponentially growing wave with a constant wave- 
length. At low velocities, where the influence of the surroundings may be neg- 
lected, the growth rate and wavelength of the disturbance may be accurately 
predicted from Weber’s theory, equations (19) and (21). The breakup length is 
unambiguous, reproducible and readily measurable from photographs. A non- 
Newtonian inelastic jet of 0.1 yo Carbopol appears to have characteristics similar 
to those shown by Newtonian fluids, that is; a disturbance is propagated as an 
exponentially growing wave of constant wavelength. 

Solutions of 0.25 % SCMC are elastic and the jets initially show a growing wave 
with a clearly defined wavelength. The growth of the wave is, however, arrested 
before breakup and a string of droplets connected by thin threads is formed. 
The droplets are found at  regular distances from each other indicating their 
formation from a wave of constant wavelength. This behaviour is shown in the 
sequence of photographs of figure 6, plate 1. Secondary instabilities in the form 
of very small droplets may also develop on the threads as seen in the last photo- 
graph of this figure. In  0.25% Separan and 0.25% Polyox, which are con- 
siderably more elastic than 0.25 % SCMC, no wave formation is discernible and 
the first visible disturbance appears as a large droplet, isolated in space from any 



Stability of viscoelastic capillary jets 701 

systematic growth pattern. The distances between droplets are randomly 
distributed and are connected by threads which thin with distance, eventually 
leading to the breakup of the liquid column. A series of photographs taken along 
the length of a 0.25 yo Separan jet illustrates these phenomena and is seen in 
figure 7, plate 2. The behaviour of a 0.25 yo Polyox jet is similar to that shown 
by 0.25 % Separan. At high velocities the threads are able to undergo large ampli- 
tude, three-dimensional disturbances without breaking. This behaviour is shown 
in photograph (a )  of figure 9, plate 3. With more concentrated viscoelastic solu- 
tions (0.5 yo Separan) no observable disturbances were detected within the limits 
of the 6 ft. jet length which could be conveniently photographed. 

Dilute viscoelastic jets such as 0.05 % Separan display an intermediate be- 
haviour in that the disturbance is initially propagated as a wave of uneven 
amplitude whose wavelength increases with distance. Gradually the waves form 
a string of droplets connected by threads, as in the 0.25 % Separan and 0.25 % 
Polyox jets. The droplet distribution, while not completely random, is less 
regular than in 0-25 % SCMC. The photographs of figure 8, plate 2, show how a 
0-05 % Separan jet changes in appearance from an initial wave-like contour to 
a configuration consisting of droplets connected by threads. The threads are 
seen to thin with distance from the nozzle, and at the same time, the droplet 
diameter increases. Jet  breakup results from disruption of a thinning thread. 
In  this dilute viscoelastic jet there is a preponderance of ‘twin ’ droplets in 
juxtaposition and separated from the rest by long threads. Photograph (d )  of 
figure 8 illustrates the interesting symmetry of the ‘twin’ droplets. 

Another type of instability in which the liquid column possesses a screw 
orientation has been observed with dilute viscoelastic jets. There is only a narrow 
velocity range where this phenomena is distinctly visible. Photographs (b )  and (c) 
of figure 9 show a 0.05 % Guar Gum jet travelling at  a velocity of 350 cm/sec and 
forming a stable helix whose pitch increases with distance from the nozzle. Near 
breakup, a disturbance wave with an identifiable wavelength can be seen 
superimposed upon the helix. Another example of a screw instability can be 
seen in the photographs (d ) - ( i )  of figure 9 for a 0-05 % Separan jet moving with 
a velocity of 690 cmisec. The disturbance develops close to the nozzle but later 
dampens out and finally reverts to the droplet thread configuration characteristic 
of viscoelastic jets. The screw instabilities resemble the shapes observed with 
molten polymers undergoing melt fracture. 

Figures 5-9 have served to qualitatively demonstrate the difference between 
Newtonian, non-Newtonian inelastic and viscoelastic jets. In  the following 
sections a more detailed and quantitative discussion will be presented. 

3.3. Newtonian and viscoinelastic jets 
The wavelengths of disturbance waves propagating in Newtonian and 0.1 % 
Carbopol jets were measured over a range of velocities and nozzle diameters. 
Typical data are given in table 2. As predicted from Weber’s theory (equation 
(Zl)), the wavelength of a low speed jet is independent of velocity. Good agree- 
ment was obtained between the theoretical wavelengths for Newtonian fluids 
and the experimental values. The disturbance wavelength for a 0.1 yo Carbopol 
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jet corresponds to that of an inviscid liquid, which would be expected at these 
high shear conditions for a fluid with a shear dependent viscosity, if its molecular 
relaxation time were of the same order as the jet breakup time. 

Nozzle Jet  
diameter velocity Experimental Theoretical 

Liquid or solution (em) (cmlsec) wavelength wavelength 
Water 0.0263 190 O.O&O. 10 0.12 

310 0.10 0.12 
75 yo glycerin-water 0.0868 270 0.49 0.45 
0.1 yo 0-0414 300 0-15 0-19* 
Carbopol 440 0.15 0-19" 
0.1 yo 0,0868 310 0.35 0.39* 
Carbopol 410 0.35 0-39* 

* Calculated for an inviscid fluid. 

TABLE 2.  Comparison of calculated and measured wavelengths for Newtonian and 
0.1 % Carbopol jets. 

Jet  velocity (cm/sec) 
FIGURE 10. Breakup length of water and 0-1 yo Carbopol jets as a function of 

jet velocity. 0, water; x , 0.1 yo Carbopol. Nozzle diameter, 0.0263 cm. 

The stability of 0.1 yo Carbopol was compared to that of water, which behaves 
as an inviscid liquid under these conditions, by plotting breakup length us. jet 
velocity for a 0.0263 cm nozzle. As seen in figure 10, when both curves are linear, 
the stability of the ideal fluid is greater than that of the non-Newtonian inelastic 
fluid. This result is surprising since the viscosity of 0-1 yo Carbopol is higher than 
that of water at  all shear rates and yet their surface tensions are equivalent. 
A more dramatic comparison is shown in the photograph of figure 11, plate 3, 
where the breakup length of water is seen to be 24 times greater than for 0.1 % 
Carbopol at the same jet velocity and nozzle diameter. However, as seen from 
figure 10, the viscous consisteiicy of 0.1 yo Carbopol does inhibit breakup due to 
air resistance. The maximum in its Lvs.  P curve occurs at much higher velocities 
than that for water. 
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Weber’s analysis for Newtonian jets, equation (23 ) ,  predicts that L / 2 a  is 
proportional to ( 2 a ) t  for a low viscosity fluid and is independent of (2a )  for 
a high viscosity liquid. This result was confirmed by the Newtonian jet experi- 
ments. Breakup length vs. jet velocity data for 0.1 % Carbopol, taken from the 
linear portion of the complete curve, are plotted in figure 12 and show stability 
to increase with velocity and nozzle diameter. At constant velocity, L / 2 a  was 

o 

Jet velocity (cm/sec) 
FIGURE 12. Breakup length of 0.1 yo Carbopol jet in the laminar flow region as a function 
of jet velocity and nozzle diameter. Nozzle diameter: 0, 0.0263 cm; x , 0.0414 cm; A, 
0.0868 em. 

found to be proportional to (2a)4, which indicates that a 0.1 yo solution of 
Carbopol behaves quite similar to an inviscid liquid. 

3.4. Viscoelastic Jluids 
Solutions of 0-25  yo SCMC form jets which initially propagate disturbances as 
a growing wave with a constant wavelength. In  Newtonian jets, there is almost no 
difference between the place where the wave amplitude is strongly evident and 
the place of final breakup. However, as seen in figure 6 ,  the growth of the wave 
in 0.25 % SCMC jets is arrested and strings of droplets connected by thinning 
threads are formed. Final breakup occurs much later and in this region of non- 
linear disturbances the predictions of linear theory are inapplicable. The breakup 
length for 0.25 % SCMC jets is therefore defined as the distance from the nozzle 
where the disturbance wave amplitude is comparable to the original jet radius. 
Using this criterion, the breakup length and wavelength are found to lie between 
those predicted for an inviscid jet and those for a Newtonian fluid of the same 
zero shear viscosity, which is in agreement with the theoretical predictions. 
Typical data are found in table 3. 

Viscoelastic jets of 0.25 % Separan and 0-25  % Polyox in figures 5 and 7 have 
shown that those fluids possess a unique initial disturbance distance, which 
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represents the distance from the nozzle to the sudden appearance of a large 
droplet. Values for this distance are not as reproducible as for Newtonian jet 
breakup length and were found to vary by 30 yo. The initial disturbance 
length for a 0.25 yo Separan jet, as shown in figure 13, increases with velocity 
and nozzle diameter. A crossplot of the data, taken at  a velocity of 400 cm/sec 

Thcoretical Experi- Experi- 
breakup mental Theoretical mental 

Nozzle Jet  length (cm) breakup wavelength wave- 
diameter velocity r-A-, lengths (--J-, length 

(cm) (cm/sec)$(O)=Ocp $(0)=45cp (cm) $(0)=0cp $(0)=45cp (em) 
0.0216 309 1.8 3.3 2-5 0.099 0.14 0.12 

426 2.3 4.4 3.3 0.099 0.14 0.11 

TABLE 3. Breakup length and wavelength of 0.25% SCMC jets 
compared to Newtonian jets 

Jet velocity (cmlsec) 
FIGURE 13. Ratio of initial disturbance distance to nozzle diameter for a 0.25 yo Separan 
jet as a function of jet velocity. Nozzle diameter: x ,  0-0216cm; 0, 0.0263cm; 0, 
0.0414 em; A,  0.0888 cm. 

is given in figure 14 and shows the initial disturbance length/nozzle diameter 
ratio to be a strong function of diameter. As the nozzle diameter increases, the 
fluid becomes less sheared and the initial disturbance length/nozzle diameter 
ratio becomes independent of diameter. This result would be expected for a highly 
shear sensitive liquid. 

The breakup length of the dilute (0.05 %) and the more concentrated (0.25 %) 
Separan jets based on the point where the threads break, is shown in figure 15 
as a function of jet velocity. Determination of this distance was made by visual 
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FIGURE 14. Effect of nozzle diameter on initial disturbance length at constant 
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FIGURE 14. Effect of nozzle diameter on initial disturbance length at constant 
jet velocity for a 0.25 yo Separan jet. Je t  velocity = 400 cm/sec. 
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FIGURE 15. Breakup length of 0.05% Seperan and 0.25% Separan jets a.s a function of 
jet velocity and nozzle diameter. Nozzle diameter: x , 0.0216 cm; 0, 0-0263 cm; A, 
0.0414 om; 0, 0.0868 cm; - - -, 0.05 yo Separan; --, 0.25 Yo Separan. 
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observation of the liquid column under stroboscopic light and the accuracy of 
these measurements therefore depends upon the ability to detect the finest 
threads. Values were found to be reproducible to within ~f: 10 yo. The breakup 
length is seen to be initially linear with velocity and then becomes independent 
of it. This behaviour is very different from that for a Newtonian or a non- 
Newtonian inelastic jet. The breakup length for these fluids is also initially 
linear with jet velocity but, when air resistance becomes significant, the curve 
goes through a maximum and further increases in jet velocity result in a decrease 
in breakup length. As the flow within the capillary becomes turbulent the breakup 
length again increases linearly with jet velocity. A detailed description of these 
changes for Newtonian jets is presented by Grant & Middleman (1966). 

The ‘ droplet-thread ’ configuration is the form eventually assumed by both 
the dilute and the more concentrated viscoelastic jets. Threads are seen to thin 
with increasing distance from the nozzle while the droplet diameter increases. 
By photographing a 0.25 yo Separan jet along its length until breakup occurred, 
the droplet diameter and thread length were determined as a function of distance 
along the liquid column. The droplet size slowly increased to approximately 
1.5 times its original diameter until about half-way from the breakup point; 
thereafter it remained constant. The ratio of the Sauter mean diameter, D,, and 
the weight average mean diameter, D,, were also constant in this region, where 
the average droplet diameter is still increasing; selected frames are shown in 
photographs (a) - ( f )  of figure 16, plate 4. The droplets do not all move at the same 
velocity along the threads and, as a result, collisions occur, creating new droplets 
of larger diameter. Smaller particles decelerate more rapidly than larger particles 
because of air friction and this would lead to collisions of the type observed. 
Of course, this does not explain why the viscoelastic jet forms the ‘ droplet-thread ’ 
configuration in the first place. Photographs (g)-(j) of figure 16 show an instance 
where a whole section of the jet overtakes another section which was previously 
several centimetres in front of it and then passes it. This phenomenon is not as 
yet understood . 

The thread lengths between droplets were also analyzed as a function of 
distance from the nozzle but were found to be widely distributed and showed no 
discernible pattern. At any one location, the values ranged from fractions of 
a centimetre to 6 cm with an average of 2.5 em. Thread lengths of the dilute 
viscoelastic jet (0.05%) Separan vary in a similar manner except that the 
threads are shorter. 

While thread thinning data for all viscoelastic jets show considerable scatter, 
a dimensionless plot of the fraction of original radius a’la vs. the fraction of 
breakup length, L’/L, has the form shown in figure 17. Here a‘ represents the 
jet radius at  a distance L’ from the nozzle tip. Thus, breakup of the jet by dis- 
ruption of the thinnest thread is imminent when the thread diameter is approxi- 
mately of the original diameter. Just before breakup occurs, the threads thin 
quite rapidly. In  this region the stability of the threads is quite remarkable. 
For example, in the region prior to breakup, for a 0.05 % Separan jet issuing 
from a 0.0216cm nozzle at 460cm/sec, the diameter of the threads connecting 
a series of droplets decreased from 0.01 ern to 0.004 em over a length of 8 em. 
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A Newtonian liquid of the same zero shear viscosity would break up in only 
1-2 cm under these conditions. 

The average diameter of the droplets formed after breakup as well as the 
size distribution were determined over a range of experimental variables for 
0.05 % Separan jets and a t  a single flow condition for a 0.25 % Separan jet. The 
data taken with 0.05 % Separan show the droplet diameter to initially decrease 

I I I 
0 0.50 1 .o 

L'IL 
FIGURE 17. Non-dimensional plot of ratio of @'/a) us. (L'/L) for viscoelastic jets. 

with jet velocity and then become independent of it. As shown in figure 18, 
the 0.05 % Separan droplets follow a normal distribution whereas the 0.25 % 
Separan droplets do not. From the photographs taken at  the point of breakup 
it is seen that with 0.05 yo Separan the connecting threads are absorbed into 
the main droplet. However, the threads in a 0.25 % Separan jet collapse and 
form small satellite droplets. Thus with the more concentrated viscoelastic fluid 
there would be a preponderance of small droplets included and the size distribu- 
tion will assume the shape of a bimodal distribution (figure 18). 

Duffie & Marshall (1953) investigated the droplet diameters and size distribu- 
tions to be expected from the breakup of low speed, low viscosity Newtonian 
jets using capillary diameters and jet velocities similar to those employed in this 
study, Their data ware correlated by the empirical equation 

0, = 36(2~)@56Re-~'~~,  (33) 

where Dg, the geometric mean diameter and u are in microns. For turbulent flow 
conditions, Miesse (1955) expressed the results of his Newtonian jet experiments 
in the form 

Dl2a = Wea(23-5 + 3.95 x 10-4Re). (34) 

Based on the estimated zero shear viscosity of 0.25 % Separan, both (33) and (34) 
would predict a droplet diameter twice as small as that measured here. These 
discrepancies indicate that existing Newtonian correlations are inadequate to 
predict droplet data for viscoelastic jets such as 0.25 yo Separan. The standard 
deviation and the coefficient of variation, C,, obtained in this study of Separan 

45-2 
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jet, however, were of the same order of magnitude as the results of Duffie & 
Marshall. The coefficient of variation, C,, is defined as 
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where Di is the diameter of droplet i. 
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4. Discussion of experimental results 
In  the theoretical analysis it has been shown that the growth rate of axi- 

symmetric disturbances for any viscoelastic fluid is higher than that of a New- 
tonian fluid of the same zero shear viscosity, but smaller than that of an inviscid 
fluidtIf the complex viscosity of the viscoelastic fluid could be readily measured, 

then one could predict the growth rate as a function of wavelength, assuming 
that the liquid column is completely relaxed initially. However, for the dilute 
solutions used in these experiments, the complex viscosity cannot be determined 
and only a qualitative prediction can be made. 

In  the experiments, growth rates were not measured directly and comparisons 
of jet stability were made on the basis of the breakup length. This approach 
gives good agreement with Weber's theoretical predictions (equation (23)) for 
Newtonian liquids. The breakup lengths of 0.1 yo Carbopol and 0.25 % SCMC 
were found to be shorter than those of a Newtonian fluid of the same zero 
shear viscosity, in agreement with theory. Actually, the breakup length of 0.1 % 
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Carbopol was even shorter than for an inviscid fluid and this phenomenon is 
not presently understood. 

Contrary to what occurs in Newtonian liquids, the growth of the disturbance 
wave in 0.25 % SCMC does not lead to immediate breakup and the droplets 
remain connected for a considerable distance by thin threads. This thread forma- 
tion seems to be typical of elastic liquids. No wave formation has been observed 
in highly elastic liquids such as 0-25 yo Separan and 0.25 % Polyox. Even in 
relatively dilute solutions (0.05 yo Separan) the waves which do appear initially 
are damped out. Instead, disturbances propagate as isolated droplets connected 
by random lengths of threads. In  many cases, the threads are longer than any 
reasonable wavelength that could be associated with the droplet. These non- 
linear disturbances occur at a distance which is shorter than the breakup length 
of a Newtonian liquid of comparable zero shear viscosity. Thus, one cannot 
conclude that the viscoelastic jet is more stable with respect to the growth of 
axisymmetric disturbance waves. 

It has been observed for all the viscoelastic jets that the droplets which are 
formed are connected by threads which continually thin and lead to the eventual 
breakup of the jet. Two questions arise: why do the threads form, and what 
causes their remarkable stability? While the original jet does not show any 
increased stability as compared to a Newtonian jet, the connecting threads have 
a lifetime several fold higher than expected since viscoelastic jets, extruded from 
a nozzle which are of the same order of thickness as the threads, do not exhibit 
this increased stability. 

Two reasons might explain this difference. First, a viscoelastic jet extruded 
from a nozzle which is of similar thickness as the thread has just experienced 
a high shear rate. The breakup time and relaxation time are of the same order of 
magnitude. Thus, the jet breaks up before the jet has relaxed and regained its 
shear dependent viscosity. However, the thin thread a t  a distance from the 
nozzle is derived from a much thicker jet which was less severely sheared in the 
capillary and which has also had time to partially relax. The second and more 
important difference is that the thread is under some stress as shown by the fact 
that it continues to thin. This stress might be caused by either the surface tension 
forces at the connexion to a droplet or by the relative motion of two droplets. 
Looking at photograph (a) of figure 9, plate 3, one might question this explana- 
tion as some threads look quite relaxed. However, the high speed movies indicate 
that a thread as seen in photographs (a)-(j) of figure 18 constantly changes its 
configuration and therefore must be undergoing some deformation. 

The formation and stability of a thread might have a common explanation. 
During thread formation and during the thinning process, the liquid undergoes 
a flow which is characterized as an extrusion or stretching flow. Coleman & No11 
(1962), Lodge (1964, pp. 114-18) and White (1964) have shown that the behaviour 
of elastic liquids under tension is completely different from that in shear flow in 
the sense that viscoelastic liquids may exhibit a sharp increase in elongational 
viscosity when subjected to stretching flows. This phenomenon has also been 
used to explain the fact that one can spin an elastic liquid of low viscosity whereas 
Newtonian liquids are spinnable only a t  high viscosities. Nitschma.nn & Schrade 
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(1948), Lodge (1960), Ziabicki & Krystyna (1960), Ballmaii (1965) and Marshall 
& Metzner (1967) have related the increased spinnability of elastic liquids to the 
viscosity increase in a stretching flow. Regretfully, a rigorous quantitative treat- 
ment of spinning is not available and the above arguments are somewhat 
speculative. 

M .  Goldin, J .  Yerushalmi, R. Pfeffer and R. Shinnar 

5.  Concluding remarks 
A linearized stability analysis has shown that a liquid jet of 8 viscoelastic 

fluid exhibits a more rapid growth of axisymmetric wave disturbances than 
a Newtonian fluid of the same shear viscosity and that this result is independent 
of the form of the constitutive equation chosen. Experiments in weakly elastic 
fluids have confirmed this expectation, whereas data on fluids with more pro- 
nounced elastic properties indicate that non-linear phenomena are dominating. 

Considerably more work is necessary before the complex behaviour of elastic 
fluids will be fully understood and it is hoped that the present paper has at least 
pointed out some of these problems. Finally, it should be clear that for all practical 
purposes the atomization behaviour of elastic liquids must be considered together 
with their flow behaviour. Thus, a Napalm jet used as a flame thrower has a zero 
shear viscosity so high that a comparable Newtonian liquid could not be extruded 
through a nozzle. If this were possible, the Newtonian fluid would probably be 
stable for all practical purposes. However, as the strongly differing results of 
0.1 % Carbopol and 0.25 % Separan show, the stability of such shear thinning 
liquid jets cannot be predicted solely from a knowledge of their shear dependent 
viscosity, as their elastic properties are also important. 

In  some cases we are interested in jellifying a liquid or increasing its zero shear 
viscosity and still be able to atomize it. The results with 0.1 % Carbopol indicate 
that this could be achieved by choosing the correct thickening agent. 
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